

A158768


a(n) = 1521*n^2 + 39.


2



39, 1560, 6123, 13728, 24375, 38064, 54795, 74568, 97383, 123240, 152139, 184080, 219063, 257088, 298155, 342264, 389415, 439608, 492843, 549120, 608439, 670800, 736203, 804648, 876135, 950664, 1028235, 1108848, 1192503, 1279200, 1368939
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The identity (78*n^2 + 1)^2  (1521*n^2 + 39)*(2*n)^2 = 1 can be written as A158769(n)^2  a(n)*A005843(n)^2 = 1.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Vincenzo Librandi, X^2AY^2=1
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

G.f.: 39*(1 + 37*x + 40*x^2)/(x1)^3.
a(n) = 3*a(n1)  3*a(n2) + a(n3).


MATHEMATICA

LinearRecurrence[{3, 3, 1}, {39, 1560, 6123}, 50] (* Vincenzo Librandi, Feb 21 2012 *)


PROG

(MAGMA) I:=[39, 1560, 6123]; [n le 3 select I[n] else 3*Self(n1)3*Self(n2)+1*Self(n3): n in [1..40]]; // Vincenzo Librandi, Feb 21 2012
(PARI) for(n=0, 40, print1(1521*n^2 + 39", ")); \\ Vincenzo Librandi, Feb 21 2012


CROSSREFS

Cf. A005843, A158769.
Sequence in context: A112617 A009983 A269028 * A139191 A319490 A327589
Adjacent sequences: A158765 A158766 A158767 * A158769 A158770 A158771


KEYWORD

nonn,easy


AUTHOR

Vincenzo Librandi, Mar 26 2009


EXTENSIONS

Comment rewritten, a(0) added, and formula replaced by R. J. Mathar, Oct 22 2009


STATUS

approved



